Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Biochem Biophys Res Commun ; 716: 150039, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38701556

RESUMO

The objective of this study was to better characterize the role of the glutamine transporter SLC38A1 in cervical cancer and explore the underlying mechanisms. Data from public databases and clinical cervical cancer tissue samples were used to assess the expression of SLC38A1 and its prognostic significance. Immunohistochemical staining, qRT-PCR, and Western blotting were used to evaluate the expression of relevant genes and proteins. Cell viability, cell cycle, apoptosis, and intracellular glutamine content were measured using CCK-8, flow cytometry, and biochemical assays. Additionally, the RNA immunoprecipitation (RIP) assay was used to examine the impact of METTL3/IGF2BP3 on the m6A modification of the SLC38A1 3'UTR. Both cervical cancer specimens and cells showed significantly increased expression of SLC38A1 and its expression correlated with an unfavorable prognosis. Knockdown of SLC38A1 inhibited cell viability and cell cycle progression, induced apoptosis, and suppressed tumor growth in vivo. Glutaminase-1 inhibitor CB-839 reversed the effects of SLC38A1 overexpression. METTL3 promoted m6A modification of SLC38A1 and enhanced its mRNA stability through IGF2BP3 recruitment. Moreover, METTL3 silencing inhibited cell viability, cell cycle progression, intracellular glutamine content, and induced apoptosis, but these effects were reversed by SLC38A1 overexpression. In conclusion, METTL3-mediated m6A methylation of SLC38A1 stimulates cervical cancer progression. SLC38A1 inhibition is a potential therapeutic strategy for cervical cancer.

2.
J Am Chem Soc ; 146(11): 7605-7615, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38467427

RESUMO

Cu-SSZ-13 has been commercialized for selective catalytic reduction with ammonia (NH3-SCR) to remove NOx from diesel exhaust. As its synthesis usually requires toxic and costly organic templates, the discovery of alternative Cu-based zeolite catalysts with organotemplate-free synthesis and comparable or even superior NH3-SCR activity to that of Cu-SSZ-13 is of great academic and industrial significance. Herein, we demonstrated that Cu-T with an intergrowth structure of offretite (OFF) and erionite (ERI) synthesized by an organotemplate-free method showed better catalytic performance than Cu-ERI and Cu-OFF as well as Cu-SSZ-13. Structure characterizations and density functional theory calculations indicated that the intergrowth structure promoted more isolated Cu2+ located at the 6MR of the intergrowth interface, resulting in a better hydrothermal stability of Cu-T than Cu-ERI and Cu-OFF. Strikingly, the low-temperature activity of Cu-T significantly increased after hydrothermal aging, while that of Cu-ERI and Cu-OFF substantially decreased. Based on in situ diffuse reflectance infrared Fourier transform spectra analysis and density functional theory calculations, the reason can be attributed to the fact that NH4NO3 formed on the CuxOy species within ERI polymorph of Cu-T underwent a fast SCR reaction pathway with the assistance of Brønsted acid sites at the intergrowth interfaces under standard SCR reaction conditions. Significantly, Cu-T exhibited a wider temperature window at a catalytic activity of over 90% than Cu-SSZ-13 (175-550 vs 175-500 °C for fresh and 225-500 vs 250-400 °C for hydrothermal treatment). This work provides a new direction for the design of high-performance NH3-SCR catalysts in terms of the interplay of the intergrowth structure of zeolites.

3.
Molecules ; 29(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38398669

RESUMO

In this work, to promote the separation of photogenerated carriers, prevent the catalyst from photo-corrosion, and improve the photo-Fenton synergistic degradation of organic pollutants, the coating structure of FeOOH/BiO2-x rich in oxygen vacancies was successfully synthesized by a facile and environmentally friendly two-step process of hydrothermal and chemical deposition. Through a series of degradation activity tests of synthesized materials under different conditions, it was found that FeOOH/BiO2-x demonstrated outstanding organic pollutant degradation activity under visible and near-infrared light when hydrogen peroxide was added. After 90 min of reaction under photo-Fenton conditions, the degradation rate of Methylene Blue by FeOOH/BiO2-x was 87.4%, significantly higher than the degradation efficiency under photocatalysis (60.3%) and Fenton (49.0%) conditions. The apparent rate constants of FeOOH/BiO2-x under photo-Fenton conditions were 2.33 times and 3.32 times higher than photocatalysis and Fenton catalysis, respectively. The amorphous FeOOH was tightly coated on the layered BiO2-x, which significantly increased the specific surface area and the number of active sites of the composites, and facilitated the improvement of the separation efficiency of the photogenerated carriers and the prevention of photo-corrosion of BiO2-x. The analysis of the mechanism of photo-Fenton synergistic degradation clarified that ·OH, h+, and ·O2- are the main active substances involved in the degradation of pollutants. The optimal degradation conditions were the addition of the FeOOH/BiO2-x composite catalyst loaded with 20% Fe at a concentration of 0.5 g/L, the addition of hydrogen peroxide at a concentration of 8 mM, and an initial pH of 4. This outstanding catalytic system offers a fresh approach to the creation and processing of iron-based photo-Fenton catalysts by quickly and efficiently degrading various organic contaminants.

4.
Proc Natl Acad Sci U S A ; 121(10): e2309656121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408254

RESUMO

Inner ear hair cells are characterized by the F-actin-based stereocilia that are arranged into a staircase-like pattern on the apical surface of each hair cell. The tips of shorter-row stereocilia are connected with the shafts of their neighboring taller-row stereocilia through extracellular links named tip links, which gate mechano-electrical transduction (MET) channels in hair cells. Cadherin 23 (CDH23) forms the upper part of tip links, and its cytoplasmic tail is inserted into the so-called upper tip-link density (UTLD) that contains other proteins such as harmonin. The Cdh23 gene is composed of 69 exons, and we show here that exon 68 is subjected to hair cell-specific alternative splicing. Tip-link formation is not affected in genetically modified mutant mice lacking Cdh23 exon 68. Instead, the stability of tip links is compromised in the mutants, which also suffer from progressive and noise-induced hearing loss. Moreover, we show that the cytoplasmic tail of CDH23(+68) but not CDH23(-68) cooperates with harmonin in phase separation-mediated condensate formation. In conclusion, our work provides evidence that inclusion of Cdh23 exon 68 is critical for the stability of tip links through regulating condensate formation of UTLD components.


Assuntos
Surdez , Perda Auditiva , Camundongos , Animais , Perda Auditiva/genética , Perda Auditiva/metabolismo , Células Ciliadas Auditivas/fisiologia , Surdez/genética , Células Ciliadas Auditivas Internas/metabolismo , Caderinas/metabolismo , Éxons/genética
5.
Eur J Pharmacol ; 963: 176188, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37951490

RESUMO

A triterpenoid isolated from the plant Hedera helix, hederagenin was discovered to have anti-cancer, anti-inflammatory, anti-depressant and anti-fibrosis properties both in vivo and in vitro. In this study, the relationship between mitochondrial fission and hederagenin-induced apoptosis in ovarian cancer (OC) was investigated and the underlying mechanisms were deciphered. Hederagenin's cytotoxicity on OC cells was analyzed using colony formation and CCK-8 assays. The effect of hederagenin on OC cells was also verified by a mouse xenograft tumor model. Flow cytometric analysis was conducted to examine hederagenin's effects on mitochondrial membrane potential, apoptosis, and cell cycle OC cells. MitoTracker Red (CMXRos) staining was performed to observe the mitochondrial morphology. The protein levels of Bak, Bcl-2, Caspase 3, Caspase 9, Cyclin D1 and Bax were measured by Western blot. This study found that hederagenin could suppress the in vivo and in vitro SKOV3 and A2780 cell proliferation in an effective manner. Besides, hederagenin altered the mitochondrial membrane potential, induced S-phase and G0/G1-phase arrest, mitochondrial morphology changes, and apoptosis in OC cells. Additionally, our findings further demonstrated that hederagenin changed the mitochondrial morphology by suppressing dynamin-related protein 1 (Drp1), a crucial mitochondrial division factor. Moreover, Drp1 overexpression could reverse hederagenin-induced apoptosis, whereas the Drp1 knockdown had the opposite effect. Furthermore, hederagenin may trigger BAX mitochondrial translocation and apoptosis in OC cells. These results provided a novel perspective on the relationship between the modulation of mitochondrial morphology and the suppression of ovarian cancer by hederagenin.


Assuntos
Dinâmica Mitocondrial , Neoplasias Ovarianas , Humanos , Camundongos , Animais , Feminino , Linhagem Celular Tumoral , Proteína X Associada a bcl-2/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Dinaminas , Apoptose , Proteínas Mitocondriais/metabolismo
6.
Vasc Endovascular Surg ; 58(2): 166-171, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37607668

RESUMO

INTRODUCTION: Lower limb venous anomalies, including duplicated veins, are common and have significant impacts on the outcomes and efficacy of venous surgery. Digital subtraction angiography (DSA) guided venography, serving as the tertiary diagnostic option for venous disorders, offers valuable informations to clinical practitioners. PATIENTS AND METHODS: A retrospective study was conducted on 195 patients with suspected venous disease, evaluating 259 limbs with venography imaging. Two experienced interventional vascularists evaluated the images to determine the incidence and characteristics of variances in the femoral, popliteal, great saphenous, and small saphenous veins. Moreover, blood samples were collected to assess the safety of the venography procedure by monitoring changes in renal function. RESULT: Duplication variations were found in the lower limb veins, with the highest prevalence in the femoral vein (11.28%, 22/195), followed by the great saphenous vein (4.1%, 8/195), and the popliteal vein (1.54%, 3/195). No severe contrast agent allergies or postoperative complications were reported. No statistically significant differences were found in creatinine and urea levels pre- and post-operation for patients without duplication variations, those with duplication of the great saphenous, femoral, or popliteal vein (P < .05). CONCLUSION: DSA-guided venography is effective in identifying venous variations in lower limb disease. DFV is the most common recurrent vein, while DPV is the least. Adequate preparation ensures safety, high spatial resolution, dynamic imaging, and low tissue interference.


Assuntos
Doenças Vasculares , Insuficiência Venosa , Humanos , Flebografia/métodos , Estudos Retrospectivos , Angiografia Digital , Resultado do Tratamento , Extremidade Inferior/irrigação sanguínea , Veia Femoral/diagnóstico por imagem , Veia Safena/diagnóstico por imagem
7.
Environ Sci Technol ; 58(1): 895-905, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38134359

RESUMO

N2O is a common byproduct in the selective catalytic oxidation of ammonia, and its generation often needs to be inhibited due to its strong greenhouse effect. In this paper, using Ag/ZSO-Y as a model catalyst, the N2O selectivity was reduced by 30% through modulation of the electron metal-support interaction. The results demonstrate that the work function of the support can be regulated by the content of the doping element. As the Zr content increases in SnO2, the work function of the support decreases. Moreover, there is a positive correlation between the charge transfer amount and the work function of the support. A series of in situ DRIFTS and density functional theory calculations revealed that the -NO and -N reactions are the primary pathways for N2O formation. By adjustment of the work function of the support through varying the Zr doping level, the electronic structure of Ag NPs was further tuned, resulting in an increased reaction energy barrier for -NO and -N reactions, effectively suppressing N2O formation.


Assuntos
Amônia , Elétrons , Amônia/química , Amônia/metabolismo , Oxirredução , Metais , Catálise
8.
Chem Rev ; 123(19): 11664-11721, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37707958

RESUMO

Microporous zeolites that can act as heterogeneous catalysts have continued to attract a great deal of academic and industrial interest, but current progress in their synthesis and application is restricted to single-phase zeolites, severely underestimating the potential of intergrowth frameworks. Compared with single-phase zeolites, intergrowth zeolites possess unique properties, such as different diffusion pathways and molecular confinement, or special crystalline pore environments for binding metal active sites. This review first focuses on the structural features and synthetic details of all the intergrowth zeolites, especially providing some insightful discussion of several potential frameworks. Subsequently, characterization methods for intergrowth zeolites are introduced, and highlighting fundamental features of these crystals. Then, the applications of intergrowth zeolites in several of the most active areas of catalysis are presented, including selective catalytic reduction of NOx by ammonia (NH3-SCR), methanol to olefins (MTO), petrochemicals and refining, fine chemicals production, and biomass conversion on Beta, and the relationship between structure and catalytic activity was profiled from the perspective of intergrowth grain boundary structure. Finally, the synthesis, characterization, and catalysis of intergrowth zeolites are summarized in a comprehensive discussion, and a brief outlook on the current challenges and future directions of intergrowth zeolites is indicated.

9.
Bioresour Technol ; 387: 129631, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37544545

RESUMO

Microalgae are emerging as a promising source for augmenting the supply of essential products to meet global demands in an environmentally sustainable manner. Despite the potential benefits of microalgae in industry, the high energy consumption for harvesting remains a significant obstacle. This review offers a comprehensive overview of microalgae harvesting technologies and their industrial applications, with particular emphasis on the latest advances in flocculation techniques. These cutting-edge methods have been applied to biodiesel production, food and nutraceutical processing, and wastewater treatment. Large-scale harvesting is still severely impeded by the high cost despite progress has been made in laboratory studies. In the future, cost-effective microalgal harvesting will rely on efficient resource utilization, including the use of waste materials and the reuse of media and flocculants. Additionally, precise regulation of biological metabolism will be necessary to overcome algal species-related limitations through the development of extracellular polymeric substance-induced flocculation technology.


Assuntos
Microalgas , Microalgas/metabolismo , Matriz Extracelular de Substâncias Poliméricas , Biomassa , Tecnologia , Floculação , Biocombustíveis
10.
Life Sci Alliance ; 6(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37507137

RESUMO

Non-small cell lung cancer (NSCLC) is the main subtype of lung cancer. The role of hPCL3 isoforms, hPCL3S and hPCL3L, remains ambiguous. This study examines the functional implications of these isoforms in NSCLC, using lung cancer cell lines A549 and NCI-H226c for in vivo and in vitro analyses. The results indicate that elevated expression of both hPCL3S and hPCL3L correlates with diminished overall survival, although only hPCL3S levels are augmented in clinical NSCLC specimens. Inhibition of either isoform leads to reduced cell proliferation, invasion, and migration, with hPCL3S knockdown displaying superior effectiveness. Moreover, the findings reveal that TRIM21 interacts with both isoforms and mediates hPCL3S degradation through K48-linked ubiquitination in NSCLC cells. Conversely, TRIM21 does not facilitate hPCL3L degradation, despite forming K63-linked polyubiquitin chains. These observations highlight the divergent roles of hPCL3 isoforms in NSCLC and underscore the potential therapeutic value of targeting hPCL3S.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proliferação de Células/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ubiquitinação
11.
Sci Total Environ ; 899: 165726, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37495153

RESUMO

Chromium (Cr) is released into the environment through anthropogenic activities and has gained significant attention in the recent decade as environmental pollution. Its contamination has adverse effects on human health and the environment e.g. decreases soil fertility, alters microbial activity, and reduces plant growth. It can occur in different oxidation states, with Cr(VI) being the most toxic form. Cr contamination is a significant environmental and health issue, and phytoremediation offers a promising technology for remediating Cr-contaminated soils. Globally, over 400 hyperaccumulator plant species from 45 families have been identified which have the potential to remediate Cr-contaminated soils through phytoremediation. Phytoremediation can be achieved through various mechanisms, such as phytoextraction, phytovolatilization, phytodegradation, phytostabilization, phytostimulation, and rhizofiltration. Understanding the sources and impacts of Cr contamination, as well as the factors affecting Cr uptake in plants and remediation techniques such as phytoremediation and mechanisms behind it, is crucial for the development of effective phytoremediation strategies. Overall, phytoremediation offers a cost-effective and sustainable solution to the problem of Cr pollution. Further research is needed to identify plant species that are more efficient at accumulating Cr and to optimize phytoremediation methods for specific environmental conditions. With continued research and development, phytoremediation has the potential to become a widely adopted technique for the remediation of heavy metal-contaminated soils.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Cromo/metabolismo , Biodegradação Ambiental , Metais Pesados/metabolismo , Plantas/metabolismo , Poluentes do Solo/análise , Solo
12.
Sci Rep ; 13(1): 11140, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429969

RESUMO

Exercise has profound but variable effects on the immune system. However, only limited information exists about the changes of exercise-induced gene expression in whole immune cells. The aim of this study is to unravel the potential molecular changes of genes which are related to immunity after exercise. The raw expression data and corresponding clinical of GSE18966 were downloaded from Gene Expression Omnibus database. The differentially expressed genes between control group and treat groups were performed by in-house developed perl scripts. A total of 83 differentially expressed genes (DEGs) (|log2 FC|> 1, FDR < 0.05) were identified between control and treat group 1 (0 h after exercise), 128 DEGs (|log2 FC|> 1, FDR < 0.05) between control and treat group 2 (4 h after exercise), and there was no significant difference between control and treat group 3 (20 h after exercise). Next, we identified 51 overlapping genes between treat group 1 (0 h after exercise) and treat group 2 (4 h after exercise) using Venn analysis. Protein-protein interaction (PPI) network was constructed by Cytoscape 3.7.2, and nine hub genes (S100A12, FCGR3B, FPR1, VNN2, AQP9, MMP9, OSM, NCF4, HP) were identified. Finally, 9 hub genes were identified as the potential biomarkers of exercise using validation set (GSE83578) verification analysis. These hub genes might serve as potential molecular targets of monitoring exercise and training processes in the further.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Humanos , Leucócitos , Homologia de Genes , Bases de Dados Factuais
13.
Environ Sci Technol ; 57(26): 9495-9514, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37313598

RESUMO

Volatile organic compounds (VOCs) harm the environment and human health and have been of wide concern and purified efficiently by catalytic oxidation. Spinel oxides, mainly composed of transition metal elements with low price and extensive sources, have been widely investigated as efficient and stable catalysts for VOCs oxidation due to their adjustable element composition, flexible structure, and high thermal/chemical stability. However, it is necessary to dissect the design of the spinel in a targeted way to satisfy the removal of different types of VOCs. This article systematically summarizes the recent advances regarding the application of spinel oxides for VOCs catalytic oxidation. Specifically, the design strategies of spinel oxides were first introduced to clarify their effect on the structure and properties of the catalyst. Then the reaction mechanism and degradation pathway of different kinds of VOCs on the spinel oxides were in detail summarized, and the characteristic requirements of the spinel oxides for various VOCs purification were analyzed. Furthermore, the practice applications were also discussed. Finally, the prospects were proposed to guide the rational design of spinel-based catalysts for VOCs purification and intensify the understanding of reaction mechanisms.


Assuntos
Óxidos , Compostos Orgânicos Voláteis , Humanos , Óxidos/química , Compostos Orgânicos Voláteis/química , Oxirredução , Óxido de Alumínio , Catálise
14.
J Ethnobiol Ethnomed ; 19(1): 10, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37004116

RESUMO

BACKGROUND: Herbal tea drinks, different from classical Camellia beverages, are a wide variety of herbal drinks consumed for therapeutic purposes or health promotion. Herbal tea is widely consumed in Guangxi. However, the documentation on the plants for herbal tea and their related health benefits is still limited. METHODS: An ethnobotanical survey was conducted in 52 villages and 21 traditional markets in Guangxi from 2016 to 2021. Semi-structured interviews, key informant interviews, and structured questionnaires were applied to obtain ethnobotanical information of herbal tea, in which 463 informants had participated. Relative frequency of citation (RFC) and cultural food significance index (CFSI) were used to evaluate the most culturally significant herbal tea plants, and informant consensus factor (ICF) was applied to assess the agreement among informants. RESULTS: This study recorded 155 herbal tea species belonging to 49 families. The most commonly used parts included leaf (27.61%), whole plant (22.09%), branch and leaf (19.02%), and flower (13.50%). The most frequent preparation method of herbal tea was decoction. Herbal tea was very popular in Guangxi, attributing to its therapeutic value, special odor, and good taste. There are 41 health benefits classified into eight categories. Among them, clearing heat was the most medicinal effects. Local people had high consistency in tonic, removing cold and cough, improving blood circulation, and clearing heat away. Based on CFSI values of each species, the most culturally significant herbal tea species were Siraitia grosvenorii (Swingle) C. Jeffrey ex A. M. Lu & Zhi Y. Zhang, Plantago asiatica L., Gynostemma pentaphyllum (Thunb.) Makino, Zingiber officinale Roscoe, Pholidota chinensis Lindl., and Morus alba L. CONCLUSION: Herbal tea is a valuable heritage that carries the local people's traditional knowledge, like health care and religious belief. The recorded herbal tea species in this study possess tremendous potential for local economic development in the future. Further research on efficacy evaluation and product development of herbal tea species is necessary.


Assuntos
Plantas Medicinais , Chás de Ervas , Humanos , Medicina Tradicional/métodos , China , Etnobotânica/métodos , Fitoterapia
15.
Gen Physiol Biophys ; 42(2): 123-133, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36896942

RESUMO

Physical inactivity has evidently been a hazard factor for many diseases, including cardiovascular disease, diabetes, cancer, etc. Rising evidence indicates that RNA, as competitive endogenous RNA (ceRNA), plays an important role in adaptive changes in skeletal muscle in response to exercise training. Although the effects of exercise-induced fitness on skeletal muscle have been well established, the mechanisms underlying are not fully understood. The purpose of this study is to construct a novel ceRNA network in skeletal muscle in response to exercise training. Skeletal muscle gene expression profiles were downloaded from the GEO database. Then, we identified differentially expressed lncRNAs, miRNAs, and mRNAs between the pre-exercise and post-exercise samples. Subsequently, we constructed lncRNA-miRNA-mRNA regulatory networks based on the ceRNA theory. 1153 mRNAs (687 upregulated and 466 downregulated), 7 miRNAs (3 upregulated and 4 downregulated), and 5 lncRNAs (3 upregulated and 2 downregulated) were identified as differentially expressed genes. 3 lncRNAs, 5 miRNAs and 227 mRNAs were obtained to build miRNA-mediated ceRNA networks. We constructed a novel ceRNA regulatory network in muscle in response to exercise training, which provides insights into molecular mechanisms underlying the health benefits brought by physical activity.


Assuntos
MicroRNAs , RNA Longo não Codificante , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Redes Reguladoras de Genes , Músculos/metabolismo
16.
Oxid Med Cell Longev ; 2022: 2896049, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36062197

RESUMO

Background: Compound fuling granule (CFG) is a traditional Chinese medicine formula that is used for more than twenty years to treat ovarian cancer (OC) in China. However, the underlying processes have yet to be completely understood. This research is aimed at uncovering its molecular mechanism and identifying possible therapeutic targets. Methods: Significant genes were collected from Therapeutic Target Database and Database of Gene-Disease Associations. The components of CFG were analyzed by LC-MS/MS, and the active components of CFG were screened according to their oral bioavailability and drug-likeness index. The validated targets were extracted from PharmMapper and PubChem databases. Venn diagram and STRING website diagrams were used to identify intersection targets, and a protein-protein interaction network was prepared using STRING. The ingredient-target network was established using Cytoscape. Molecular docking was performed to visualize the molecule-protein interactions using PyMOL 2.3. Enrichment and pathway analyses were performed using FunRich software and Reactome pathway, respectively. Experimental validations, including CCK-8 assay, wound-scratch assay, flow cytometry, western blot assay, histopathological examination, and immunohistochemistry, were conducted to verify the effects of CFG on OC cells. Results: A total of 56 bioactive ingredients of CFG and 185 CFG-OC-related targets were screened by network pharmacology analysis. The potential therapeutic targets included moesin, glutathione S-transferase kappa 1, ribonuclease III (DICER1), mucin1 (MUC1), cyclin-dependent kinase 2 (CDK2), E1A binding protein p300, and transcription activator BRG1. Reactome analysis showed 51 signaling pathways (P < 0.05), and FunRich revealed 44 signaling pathways that might play an important role in CFG against OC. Molecular docking of CDK2 and five active compounds (baicalin, ignavine, lactiflorin, neokadsuranic acid B, and deoxyaconitine) showed that baicalin had the highest affinity to CDK2. Experimental approaches confirmed that CFG could apparently inhibit OC cell proliferation and migration in vitro; increase apoptosis; decrease the protein expression of MUC1, DICER1, and CDK2; and suppress the progression and distant metastasis of OC in vivo. DICER1, a tumor suppressor, is essential for microRNA synthesis. Our findings suggest that CFG may impair the production of miRNAs in OC cells. Conclusion: Based on network pharmacology, molecular docking, and experimental validation, the potential mechanism underlying the function of CFG in OC was explored, which supplies the theoretical groundwork for additional pharmacological investigation.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Ovarianas , Wolfiporia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Cromatografia Líquida , RNA Helicases DEAD-box , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Feminino , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Neoplasias Ovarianas/tratamento farmacológico , Ribonuclease III , Espectrometria de Massas em Tandem
17.
Chemosphere ; 308(Pt 2): 136256, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36113653

RESUMO

Volatile organic compounds (VOCs) are considered the culprit of secondary air pollution such as ozone, secondary organic aerosols, and photochemical smog. Among various technologies, catalytic oxidation is considered a promising method for the post-treatment of VOCs. Researchers are sparing no effort to develop novel catalysts to meet the requirements of the catalytic process. Compared with the powdered or granular catalysts, the monolithic catalysts have the advantages of low pressure drop, high utilization of active phases, and excellent mechanical properties. This review summarized the new design of monolithic catalysts (including new preparation methods, new supports, and new energy supply methods) for the post-treatment of VOCs. It addressed the advantages of the new designs in detail, and the scope of applicability for each new monolithic catalyst was also highlighted. Finally, the highly required future development trends of monolithic catalysts for VOCs catalytic oxidation are recommended. We expect this work can inspire and guide researchers from both academic and industrial communities, and help pave the way for breakthroughs in fundamental research and industrial applications in this field.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Aerossóis , Poluentes Atmosféricos/análise , Ozônio/química , Smog , Compostos Orgânicos Voláteis/análise
18.
Bioresour Technol ; 363: 128022, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36167173

RESUMO

The current study investigated the in-situ aquaculture nutrient removal from fish tanks using mixotrophic Scenedesmus in a floating permeable nutrient uptake system (FPNUS) and compared with nutrient concentration in control, autotrophy, and bacterial nitrogen removal (BNR) treatments. In the first run, results were not as expected due to the missing PO4--P as the mixotrophic growth in flasks with PO4--P was 55.86% more than growth in aquaculture wastewater. With PO4--P addition in FPNUS, average and maximum removal rates under mixotrophy reached 2.53 and 10.96 mg/(L·d), respectively. The average mixotrophic removal rate was 40.31 and 81.42% higher than removal rates under autotrophy and BNR. Daily nutrient loading and removal were matched only in mixotrophy after fourth day of culture. These results show the great potential for nutrient removal using mixotrophic microalgae-based FPNUS due to its high efficiency, capability of in-situ treatment and nutrient recycling through biomass utilization.


Assuntos
Microalgas , Scenedesmus , Animais , Aquicultura , Biomassa , Nitrogênio/análise , Nutrientes , Águas Residuárias
19.
Transpl Immunol ; 75: 101685, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35933079

RESUMO

BACKGROUND: It is observed that circular RNA (circRNA) PTTG1 interacting protein (circPTTG1IP) level is notably up-regulated in rheumatoid arthritis (RA) patients by previous study. However, its precise role and working mechanism in RA pathology remain to be clarified. METHODS AND RESULTS: Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot assay were carried out to examine RNA and protein expression. Cell proliferation was analyzed by colony formation assay and 5-Ethynyl-2'-deoxyuridine (EdU) assay. Cell motility was assessed by transwell assays and wound healing assay. Flow cytometry (FCM) analysis was performed to assess cell apoptosis rate. Dual-luciferase reporter, RNA immunoprecipitation (RIP), and RNA-pull down assays were conducted to confirm the interaction between microRNA-431-5p (miR-431-5p) and circPTTG1IP or follistatin like 1 (FSTL1). CircPTTG1IP expression was up-regulated in the synovial tissues of RA patients and RA patients-derived fibroblast-like synoviocytes (RA-FLS). CircPTTG1IP absence suppressed the proliferation, migration, and invasion and induced the apoptosis of RA-FLS. CircPTTG1IP negatively regulated the expression of miR-431-5p by directly binding to it in RA-FLS. CircPTTG1IP interference-mediated effects in RA-FLS were largely counteracted by the silence of miR-431-5p. miR-431-5p directly interacted with the 3' untranslated region (3'UTR) of FSTL1. FSTL1 overexpression largely overturned miR-431-5p accumulation-mediated effects in RA-FLS. CircPTTG1IP positively regulated FSTL1 expression by sponging miR-431-5p in RA-FLS. CONCLUSION: CircPTTG1IP absence suppressed RA progression through mediating miR-431-5p/FSTL1 signaling cascade.


Assuntos
Artrite Reumatoide , Proteínas Relacionadas à Folistatina , MicroRNAs , Sinoviócitos , Humanos , Apoptose/genética , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Proliferação de Células/genética , Proteínas Relacionadas à Folistatina/genética , Proteínas Relacionadas à Folistatina/metabolismo , MicroRNAs/genética , Sinoviócitos/metabolismo , Sinoviócitos/patologia , RNA Circular/genética
20.
Front Genet ; 13: 860815, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903364

RESUMO

Background: Acute sprint exercise is a time-efficient physical activity that improves cardiorespiratory fitness in younger and middle-aged adults. Growing evidence has demonstrated that acute sprint exercise provides equal to or superior health benefits compared with moderate-intensity continuous training, which will dramatically increase aerobic capacity, insulin sensitivity, and muscle capillarization. Although the beneficial effects of acute sprint exercise are well documented, the mechanisms behind how acute sprint exercise prevents disease and benefits health are less understood. Method: We obtained differentially expressed genes in muscle (vastus lateralis) from men and women before and after an acute sprint exercise. Then, we identified hub genes from the protein-protein interaction (PPI) network of differentially expressed genes (DEGs) and key transcription factors in men and women related to acute sprint exercise. Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses are performed on DEGs and sex-biased genes, respectively. Results: First, we identified 127 sexually dimorphic genes in men (90 upregulated and 37 downregulated) and 75 genes in women (90 upregulated and 37 downregulated) in response to acute sprint exercise. Second, CEBPB, SMAD3, and CDKN1A are identified as the top three hub genes related to men-biased genes. Accordingly, the top three hub genes related to women-biased genes are JUN, ACTB, and SMAD7. In addition, CLOCK, ZNF217, and KDM2B are the top three enriched transcriptional factors in men-biased genes, while XLR, SOX2, JUND, and KLF4 are transcription factors enriched most in women-biased genes. Furthermore, based on GO and KEGG enrichment analyses, we identified potential key pathways in regulating the exercise-related response in men and women, respectively. Conclusion: In this study, we found the difference in gene expression and enrichment pathways in muscle in men and women in response to acute sprint exercise. These results will shed new light on the mechanism underlying sex-based differences in skeletal muscle remodeling and metabolism related to acute sprint exercise, which may illustrate the mechanisms behind how acute sprint exercise prevents disease and benefits health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA